Artin groups of spherical type up to commensurability

María Cumplido Cabello* Université de Bourgogne

*maria.cumplido-cabello@u-bourgogne.fr

Abstract. Let A and A' be two Artin groups of spherical type, and let A_1, \ldots, A_p (resp. A'_1, \ldots, A'_q) be the irreducible components of A (resp. A'). We show that A and A' are commensurable if and only if p = q and, up to permutation of the indices, A_i and A'_i are commensurable for every i. We prove that, if two Artin groups of spherical type are commensurable, then they have the same rank. For a fixed n, we give a complete classification of the irreducible Artin groups of rank n that are commensurable with the group of type A_n . Note that there will remain 6 pairs of groups to compare to get the complete classification of Artin groups of spherical type up to commensurability. This is a joint work with Luis Paris.

	Artin groups of spherical type
Let S be a finite set and $M = (m_{s,t})_{s,t\in S}$ a symmetric matrix	If, by adding $s^2 = 1$ to the relations of A , we obtain a finite group, we say that A has spherical type.
with $m_{s,s} = 1$ and $m_{s,t} \in \{2, \ldots, \infty\}$ for $s \neq t$. The Coxeter	Coxeter [Cox] classified the irreducible ones in the following 10 classes:
$ranh \Gamma_{r}$ is the graph with set of vertices S and	(\boldsymbol{s}_2)

graph I_M is the graph with set of vertices \mathcal{D} and

The Artin group associated to Γ_M , denoted by $A[\Gamma_M]$, is the group with the following presentation

$$A = \langle \Sigma \mid \underbrace{sts...}_{m_{s,t} \text{ elements}} = \underbrace{tst...}_{m_{s,t} \text{ elements}} \forall s, t \in S, \ s \neq t, \ m_{s,t} \neq \infty \rangle.$$

A is irreducible if its Coxeter graph is connected.

Definition Two groups G_1 and G_2 are commensurable if there are two finite index subgroups H_1 of G_1 and H_2 of G_2 such that H_1 is isomorphic to H_2 .

Aim Classifying Artin groups of spherical type up to commensurability.

• **Reducible case:** The following theorem shows that this case entirely depends on the irreducible case.

Theorem [CP]

Let $A[\Gamma]$, $A[\Omega]$ be two Artin–Tits groups of spherical type with Coxeter graphs Γ and Ω having decom-

• Irreducible case: The following result allows us to significantly reduce the pairs of potential commensurable groups.

positions

 $\Gamma = \Gamma_1 \sqcup \Gamma_2 \sqcup \cdots \sqcup \Gamma_p, \quad \Omega = \Omega_1 \sqcup \Omega_2 \sqcup \cdots \sqcup \Omega_p \quad (\Gamma_i \text{ and } \Omega_i \text{ are connected components.})$ **A**[**\Gamma] and A**[**\Omega**] **are commensurable if and only if A**[**\Gamma_i**] **and A**[**\Omega**] **are commensurable** (up to permutation).

Proposition [CP]

If $A[\Gamma]$ and $A[\Omega]$ are commensurable Artin groups of spherical type, then the Coxeter graphs Γ and Ω have the **same number of vertices**.

We say that an element α in a group G is a generalized torsion element if there are $p \ge 1$ and $\beta_1, \ldots, \beta_p \in G$ such that $(\beta_1 \alpha \beta_1^{-1})(\beta_2 \alpha \beta_2^{-1}) \cdots (\beta_p \alpha \beta_p^{-1}) = 1$. We say that G has generalized torsion if it contains a non-trivial generalized torsion element.

 A_3

Partial classification

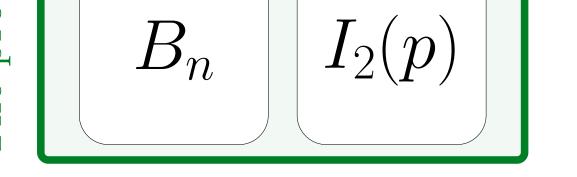
direct and short.	An A2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
ofs are			

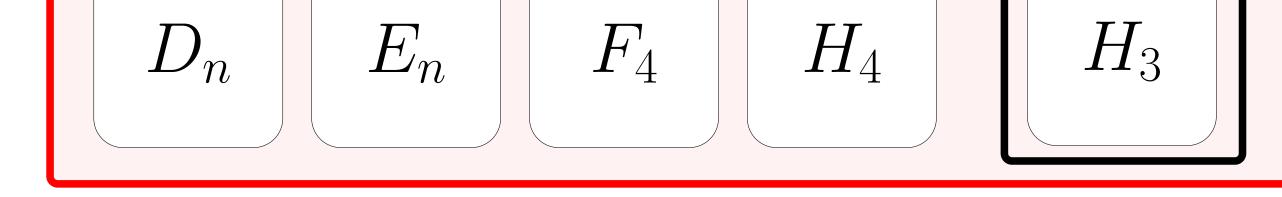
The groups corresponding to these pairs are **not commensurable**. To prove it we use the following result:

Lemma [CP]

If the kernel of every homomorphism $\varphi : A[\Gamma]/Z(A[\Gamma]) \rightarrow \mathfrak{S}_{n+2} \times \{\pm 1\}$ has generalized torsion^{*}, then $A[\Gamma]$ and $A[A_n]$ are not commensurable. $*\mathfrak{S}_n$ is the symmetric group with *n* elements.

commensurable





Using a software, we check that in every case (but for the pair (A_3, H_3)) we can construct generalized torsion elements in $\text{Ker}(\varphi)$, for every homomorphism φ .

Definition Let $\Sigma = \Sigma_{g,b}$ be the orientable surface of genus g The extended mapping class group of the pair (Σ, n) , denoted by $\mathcal{M}^*(\Sigma, n)$, is the group of isotopy classes of homeomorphisms $h : \Sigma \to \Sigma$ that fix the boundary of Σ pointwise and preserve a set of ndifferent points inside Σ . *(More in [FM])*.

For the special case of (A_3, H_3) , we prove that there is no injective homomorphism from $A[H_3]/A[H_3]$ to $\mathcal{M}^*(\Sigma_{0,0}, 5)$, and that this implies that the groups are not commensurable.

Open problem To finish the classification we need to know if the groups of these pairs are commensurable: $(D_6, E_6), (D_7, E_7), (D_8, E_8), (D_4, F_4), (D_4, H_4), (F_4, H_4).$

Acknowledgements

This work has been made possible thanks to the financial support of the research project MTM2016-76453-C2-1-P financed by Spanish Government and FEDER, the research group FQM-218 financed by Junta de Andalucía and a one-year postdoc contract at Université de Bourgogne. It is also made possible thanks to the mathematical (and emotional) support of Luis Paris during this year.

References

[Cox] **H.S.M Coxeter**, The complete enumeration of finite groups of the form $r_i^2 = (r_i r_j)^{k_{ij}} = 1$. J. Lond. Math. Soc., 10:21-25, 1935.

[CP] M. Cumplido, L. Paris, Commensurability in Artin groups of spherical type. arXiv:1904.09461.
[FM] B. Farb, D. Margalit, A primer on mapping class groups. Princeton Mathematical Series, 49. Princeton University Press, Princeton, NJ, 2012.