Minimal standardizer of a parabolic subgroup of an Artin-Tits group
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Abstract. The minimal standardizer of a curve is the minimal positive braid that transforms it into a round one. We give an algorithm to compute it in a geometrical way, using the concept of bending point. Then, we generalize this problem algebraically to parabolic subgroups of Artin-Tits groups of spherical type and
we show that, to compute the minimal standardizer of a parabolic subgroup, it suffices to compute the pn-normal form of the generator of its center.

Definition of braid Artin-Tits group of spherical type Parabolic subgroup of A
A braid with n strands can be seen as a collection of n disjoint /\ et S be a finite set and M = (m; ;)i jes a symmetric matrix with m;; =1 and m;; € {2,...,00} for @ # j. A subgroup Ax C A generated by a
paths in a cylinder, defined up to isotopy, joining n points at the s @ o et 2 = {o;|i € S}. The Artin-Tits system associated to M is (A, ), where A is a group with the following subset X of ¥ is a standard parabolic
top with n points at the bottom, running monotonically in the w oresentation subgroup.
vertical direction. = A= (3| o000...=000;..¥i,] €S,1%# j, mj; # 00).
The braid group is generated by o1, ..., 0,_1, where each o; rep- m; j elements  m; ; elements If we conjugate Ax by a € A we ob-

t ing bet the strands i ition 7 and 7 + 1 with ~\ _ tain a parabolic subgroup, denoted b
;e:iir;ds jricernisas;ir;gn [;]W::heeiitrjrr; ;IE ;:Tozl I((;ngl ialsnrez:ersenv:;d /‘// \ By adding the relation 07 = 1, the associated Coxeter group is obtained. If the Coxeter group is finite, then A p_ (jX o) = aAi&_F; y

. . L P — 92010201 15 TEP | is said to be of spherical type. The main example is the braid group. ’ |
This braid is positive, as all generators appear with positive expo- v
nent. How to standardize a parabolic subgroup?
How to standardize a curve on D)7 Keep in mind that A is a Garside group [2|. This implies that A has a submonoid of positive elements, A™, and a partial order < (resp. =), defined by

a<bsa'be At (resp. a = b < ab~! € AY) such that for all a,b € A it exists a unique ged @ A b (resp. a A'b) and a unique lem a V b (resp. a V' b).
A braid can be also seen has an automorphism of the disk

C For a parabolic subgroup P = (Ax, a), we want to compute the <-minimal 3 € A" such that 371P# is standard.
@ with n punctures, D,,, which fixes its border. A braid
2 acts on the set of isotopy classes of simple closed curves
i on D,,. Garside element A 1 : 3 pn-normal form What has to do a curve with a
102010201 S 1 ?
5 For example, o turns the following curve C' on the left For each A of spherical type / !_et a,b € P, we say ’Cha’f1 r=ablis parabolic subgroup
into a round one (also called standard). We will say it exists an element in pn-normal form if a A"b = 1. [4]
, , ; . o A standard curve can be
that o 1§ a standa].fdlzer of C'. The set of all positive A = \/ o; associated to the subgroup
standardizers of C' is denoted St(C'). ieS
generated by the set of
such that A° generates the / . .
LEE & LEE [5]: There is a unique minimal element on St(C' _ generators involving only
! it] center of A, for e = 1 or Theorem (C) its enclosed punctures
C. : Let’s compute it! e — 2. For the braid group, p .
. . A is a half-twist of the trivial Let P = (Ax, a) be a parabolic . | o
Bending point Algorithm for curves (C) braid (on the right). 3" > 1 subgroup. If A%, = ab=1 is in This is why parabolic subgroups are a generalization of

simple closed curves. The curve in the picture corre-
sponds to Ay, 1. If the braid « acts on D, then the
corresponding parabolic subgroup is (A, 5.1, at).

pn-normal form, then b is the min-
imal standardizer of P.

The curve C' has a bending point at j
if a part of the curve is as in the picture
below (up to deformation). If a curve

For Ax, the element is denoted Ay. For P = (Ax, a)
the generator of the center is A%, = alsa~ ! [6].

INPUT: A curve (.

is not standard, then it has a bending 1. Set a=1; . .
: 2. While C has a bending point at .
point. [3] . & P Example 2:
7=1,....,n—1 do:
2.1 o= ao;; Let us treat algebraically the same case of Example 1. The input of the new Example of algorithm for parabolic subgroups:
2.2 C =C% (Apply o; to C); _algorlthm has to be the conjug_alte of a2 standard parabolic subgroup. A possible
input could be P = (Ay,y, 05 01A7). ©®© A, = 0 generates Z(A, ).
. . . . »
OUTPUT : Ck 1s the minimal @ A{Jl},aglalﬁ_z = 01 090105 O7.
standardizer of C. o lgi A2
SRR TR e > Th | f f A ' o lgsd
] ® e pn-normal form of Ay v 1, A2 is (09010109) « (0] 01 05 7).
©® Hence, the minimal standardizer is oy007;.
_ Y,
p
Example 1
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