

Abstract. The minimal standardizer of a curve is the minimal positive braid that transforms it into a round one. We give an algorithm to compute it in a geometrical type and we show that, to compute the minimal standardizer of a parabolic subgroup, it suffices to compute the pn-normal form of the generator of its center.

Definition of braid

A braid with n strands can be seen as a collection of n disjoint paths in a cylinder, defined up to isotopy, joining n points at the top with n points at the bottom, running monotonically in the vertical direction.

The braid group is generated by $\sigma_1, \ldots, \sigma_{n-1}$, where each σ_i represents a crossing between the strands in position i and i + 1 with a fixed orientation [1]. In the picture $\alpha = \sigma_2 \sigma_1 \sigma_2 \sigma_1$ is represented. This braid is positive, as all generators appear with positive exponent.

How to standardize a curve on D_n ?

A braid can be also seen has an automorphism of the disk with n punctures, D_n , which fixes its border. A braid acts on the set of isotopy classes of simple closed curves on D_n .

For example, α turns the following curve C on the left into a round one (also called standard). We will say that α is a standardizer of C. The set of all positive standardizers of C is denoted St(C).

LEE & LEE [5]: There is a unique minimal element on St(C)C. : Let's compute it!

Bending point

The curve C has a bending point at jif a part of the curve is as in the picture below (up to deformation). If a curve is not standard, then it has a bending point. [3]

INPUT: A curve C
1. Set $\alpha = 1$; 2. While C has $j = 1, \dots, n-1$ do 2.1 $\alpha = \alpha \sigma_j$;
2.2 $C=C^{\sigma_j}$ (Ap
OUTPUT: α is the

standardizer of C.

Example 1

In order to standardize the curve on the top left side of the picture, the algorithm realises that there is a bending point at 2, and then applies σ_2 . Iterating, we obtain that the minimal standardizer of the curve is $\sigma_2 \sigma_1 \sigma_1$

Minimal standardizer of a parabolic subgroup of an Artin-Tits group

María Cumplido

Université Rennes 1 / Universidad de Sevilla

Artin-Tits group of spherical type

Let S be a finite set and $M = (m_{i,j})_{i,j \in S}$ a symmetric matrix with $m_{i,i} = 1$ and $m_{i,j} \in \{2, \ldots, \infty\}$ for $i \neq j$. Let $\Sigma = \{\sigma_i \mid i \in S\}$. The Artin-Tits system associated to M is (A, Σ) , where A is a group with the following presentation

is said to be of spherical type. The main example is the braid group.

Keep in mind that A is a Garside group [2]. This implies that A has a submonoid of positive elements, A^+ , and a partial order \preccurlyeq (resp. \succcurlyeq), defined by $a \preccurlyeq b \Leftrightarrow a^{-1}b \in A^+ \text{ (resp. } a \succcurlyeq b \Leftrightarrow ab^{-1} \in A^+ \text{) such that for all } a, b \in A \text{ it exists a unique gcd } a \land b \text{ (resp. } a \land \forall b) \text{ and a unique lcm } a \lor b \text{ (resp. } a \lor \forall b).$ For a parabolic subgroup $P = (A_X, \alpha)$, we want to compute the \preccurlyeq -minimal $\beta \in A^+$ such that $\beta^{-1}P\beta$ is standard.

Garside element Δ

For each A of spherical type it exists an element

$$\Delta = \bigvee_{i \in S} \sigma_i$$

such that Δ^e generates the center of A, for e = 1 or e = 2. For the braid group, Δ is a half-twist of the trivial braid (on the right).

For A_X , the element is denoted Δ_X . For $P = (A_X, \alpha)$ the generator of the center is $\Delta_{X\alpha}^e = \alpha \Delta_X^e \alpha^{-1}$ [6].

Example 2:

input could be $P = (A_{\{\sigma_1\}}, \sigma_2^{-1}\sigma_1\Delta^{-2}).$

Complexity of algorithms

Curves: $O(n^2 m \log(m))$ *m*: number of intersections of the curve with the real axis.

Parabolic subgroups: $O(\ell^2)$ ℓ : length of $\Delta_{X,\alpha}$.

 $A = \langle \Sigma \mid \underbrace{\sigma_i \sigma_j \sigma_i \dots}_{m_{i,j} \text{ elements}} = \underbrace{\sigma_j \sigma_i \sigma_j \dots}_{m_{i,j} \text{ elements}} \forall i, j \in S, \ i \neq j, \ m_{i,j} \neq \infty \rangle.$

By adding the relation $\sigma_i^2 = 1$, the associated Coxeter group is obtained. If the Coxeter group is finite, then A

How to standardize a parabolic subgroup?

pn-normal form

Let $a, b \in \mathcal{P}$, we say that $x = ab^{-1}$ is in *pn*-normal form if $a \wedge^{\neg} b = 1$. [4]

Theorem (C.)

Let $P = (A_X, \alpha)$ be a parabolic subgroup. If $\Delta_{X,\alpha}^e = ab^{-1}$ is in pn-normal form, then b is the minimal standardizer of P.

A standard curve can be associated to the subgroup generated by the set of generators involving only its enclosed punctures.

This is why parabolic subgroups are a generalization of simple closed curves. The curve in the picture corresponds to $A_{\{\sigma_2,\sigma_3\}}$. If the braid α acts on D_n , then the corresponding parabolic subgroup is $(A_{\{\sigma_2,\sigma_3\}}, \alpha^{-1})$.

Let us treat algebraically the same case of Example 1. The input of the new algorithm has to be the conjugate of a standard parabolic subgroup. A possible

Example of algorithm for parabolic subgroups:

- **2** $\Delta_{\{\sigma_1\},\sigma_2^{-1}\sigma_1\Delta^{-2}} = \sigma_1^{-1}\sigma_2\sigma_2$
- **3** The pn-normal form of
- 4 Hence, the minimal stand

- [1] E. Artin. Theory of Braids. Annals of Mathematics, 48(1):101–126, 1947
- [2] E. Brieskorn and K. Saito. Artin-gruppen und coxeter-gruppen. Inventiones mathematicae, 17(4):245–271 1972.
- [3] M. Calvez. Dual Garside structure and reducibility of [6] L. Paris. braids. Journal of Algebra, 356(1):355–373, 2012.
- [4] R. Charney. Geodesic automation and growth functions for Artin groups of finite type. Mathematische Annalen, 301:307–324, 1995.
- [5] E.-K. Lee and S.-J. Lee. A Garside-theoretic approach to the reducibility problem in braid groups. Journal of Algebra, 320(2):783-820, 2008.
 - Parabolic Subgroups of Artin Groups. Journal of Algebra, 196(2):369-399, 1997.

Parabolic subgroup of A

A subgroup $A_X \subset A$ generated by a subset X of Σ is a standard parabolic subgroup.

If we conjugate A_X by $\alpha \in A$ we obtain a parabolic subgroup, denoted by $P = (A_X, \alpha) = \alpha A_X \alpha^{-1}.$

What has to do a curve with a parabolic subgroup?

$$(A_{\{\sigma_1\}}).$$

$$_{1}\sigma_{2}^{-1}\sigma_{1}.$$

$$\Delta_{\{\sigma_1\},\sigma_2^{-1}\sigma_1\Delta^{-2}} \text{ is } (\sigma_2\sigma_1\sigma_1\sigma_2) \cdot (\sigma_1^{-1}\sigma_1^{-1}\sigma_2^{-1}).$$

Indardizer is $\sigma_2\sigma_1\sigma_1$.

Acknowledgements

This research is supported by

- PhD contract founded by Université Rennes 1.
- Spanish Projects MTM2013-44233-P, MTM2016-76453-C2-1-P and FEDER.
- Mobility programme "Mérimée 2015" founded by French Embassy in Spain and Spanish Ministry of Education, Culture and Sport.

Contact

maria.cumplidocabello@univ-rennes1.fr