GENERALITY CONJECTURE
IN MAPPING CLASS GROUPS

Abstract. In the Cayley graph of the mapping class group of a closed surface, with respect to any generating set, we look at a ball of large radius centered at the identity vertex, and at the proportion among the vertices in this ball representing pseudo-Anosov elements. A well-known conjecture states that this proportion should tend to one as the radius tends to infinity. We prove that it stays bounded away from zero. We also prove similar results for a large class of subgroups of the mapping class group.

NIELSEN-THURSTON CLASSIFICATION

Let G be the mapping class group of a surface S, defined as

$G = \text{MCG}(S) = \text{Aut}^-_1(S, \partial S)/\text{Aut}_0(S, \partial S)$

Then, $g \in G$ fulfills one of the following (up to isotopy):

1. g is periodic, i.e., $g = Id$ for some $n \in \mathbb{Z}$.
2. g is reducible, i.e., g preserves a family of isotopy classes of disjoint simple closed non-degenerate curves.
3. g is pseudo-Anosov, i.e., there are two measurable transverse foliations, (F^+, μ_+) and (F^-, μ_-), and a real number λ such that $g(F^+, \mu_+) = (F^+, \lambda^{-1} \cdot \mu_+)$ and $g(F^-, \mu_-) = (F^-, \lambda \cdot \mu_-)$.

The following results are from [Cumplido & Wiest].

Main result

Let G be the mapping class group of a closed surface S (with genus$(S) \geq 2$).

Then, a positive proportion of elements of G is pseudo-Anosov.

$$\liminf_{R \to \infty} \frac{|pA\text{ elements of } G \cap B_r(1, R)|}{|B_r(1, R)|} > 0$$

This result is a corollary of the following theorem:

THEOREM (Positive density of pseudo-Anosovs)

There exists a finite subset F of G such that for any element g of G, at least one of the mapping classes in $\{ f \circ g \mid f \in F \}$ is pseudo-Anosov.

Remark. The proof of this theorem is short and based on two powerful result from [Bowditch] and [Fathi].

GENERALITY FOR SOME SUBGROUPS OF G

Dehn twist

Let c be a simple closed curve on S. Consider a tubular neighbourhood N of c, which will be homeomorphic to an annulus. Performing a twist of 360° in N and extending to the whole surface S is a self-homeomorphism denoted by T_c and called Dehn twist about c.

Curve complex

The curve complex $\mathcal{C}(S)$ of S is a simplicial complex such that

- The set of vertices is the set of isotopy classes of non-degenerate simple closed curves.
- There is an edge between two vertices if the corresponding curves can be isotoped to be disjoint.

The distance between two curves α and β, $d(\alpha, \beta)$, is the length of the minimal path joining their corresponding vertices in \mathcal{C}.

Example in the torus:

$$T_2 \subset T^2, T^2 \in H$$

Condition (\ast) for a subgroup $H \subseteq G$

There are vertices a, b of $\mathcal{C}(S)$ and integers $k_a, k_b \in \mathbb{Z}$ such that

- $d(a, b) \geq R$, where R is certain number associated to G – see [Cumplido & Wiest].
- $T^{k_a}_b, T^{k_b}_b \in H$

(\ast) is for instance satisfied

- if H is a finite index subgroup of G,
- if H is the Torelli group – see [Farb & Margalit],
- if H is any finite index subgroup of the Torelli group.

THEOREM (Positive density of pseudo-Anosovs in H)

Suppose H is a subgroup of G, the mapping class group of S, satisfying Condition (\ast). Then, there exists a finite subset F of H such that for any element g of H, at least one of the mapping classes in $\{ f \circ g \mid f \in F \}$ is pseudo-Anosov. Moreover,

$$\liminf_{R \to \infty} \frac{|pA\text{ elements of } H \cap B_r(1, R)|}{|B_r(1, R)|} > 0$$

Acknowledgments. We thank Arnaud le Bouvier for a helpful conversation, and Mladen Bestvina for his remarks. This research was supported by a PhD contract founded by Université Rennes 1, Spanish Projects MTM2013-44233-P, MTM2016-76453-C2-1-P and FEDER and the French-Spanish mobility programme “MiriMea 2015”.

María Cumplido 1,
Bert Wiest 2

1 UFR des Mathématiques, Université de Rennes 1, France, and Departamento de Álgebra, Universidad de Sevilla, Spain
maria.cumplido@univ-rennes1.fr
2 UFR des Mathématiques, Université de Rennes 1, France
bertold.wiest@univ-rennes1.fr

Braid example:

The braid group with n strands, B_n, is the mapping class group of the n-punctured disk, D_n. The generators of this group are denoted $\sigma_1, \ldots, \sigma_{n-1}$, where each σ_i represents the swap of the punctures in the positions i and $i+1$ by performing a clockwise rotation.

Let α be a pseudo-Anosov braid. To have an idea of how their foliations will be, we can apply several times α and α^{-1} to a round curve in the disk.

Understanding foliations of $\alpha = \sigma_3\sigma_1^{-1}$.